PerfectStart® Green qPCR SuperMix
染料法荧光定量PCR预混液
目录号: AQ601-01-V2
单 价:¥440
产品详情介绍
本产品包含PerfectStart® Taq 热启动酶 (利用3种单克隆抗体与Taq DNA Polymerase高效结合,有效地封闭了DNA聚合酶活性,阻止了低温下的非特异性扩增)、优化的双阳离子缓冲液、SYBR Green I 荧光染料、dNTPs、PCR增强剂、PCR稳定剂。本产
品浓度为2×,使用时只需加入模板、引物、Universal Passive Reference Dye和水,使其工作浓度为1×,即可进行反应。
• 3种抗体封闭,特异性高,灵敏度高,扩增效率强,适用物种范围广。
• 双阳离子缓冲液,增强特异性,减少引物二聚体形成,数据准确。
• 配有适用于不同机型的Passive Reference Dye (调整PCR加样误差引起的管间差异 ),数据准确。

扩增效率

以梯度稀释的质粒DNA (10 ng~ 0.1 pg,10倍稀释)为模板进行扩增得到的扩增曲线和标准曲线。结果显示,TransGen产品扩增效率较高,可得到漂亮的扩增曲线和标准曲线。
封闭效果

以不同浓度人gDNA为模板扩增,琼脂糖凝胶电泳检测PerfectStart® Taq热启动酶封闭效果。结果显示,封闭后可显著提高扩增灵敏度和特异性。

以小麦cDNA为模板,qPCR检测PerfectStart® Taq热启动酶封闭效果。结果显示,封闭后可显著提高扩增特异性。
产品稳定性

不同温度保存及反复冻融处理后TransGen产品仍可稳定扩增
无NTC扩增基因数量统计

使用TransGen与Company T的产品,扩增58个基因(9个人的基因,7个小鼠的基因,17个水稻的基因,8个烟草的基因,4个拟南芥的基因,10个小麦的基因,3个玉米的基因)。无NTC扩增基因数统计。结果显示,TransGen产品无NTC扩增基因数高于Company T,扩增效果更佳。
扩增灵敏度

以500 ng的人源RNA反转录(TransGen, AT311)后得到的cDNA为模板梯度稀释,分别使用TransGen与Company T产品扩增β-actin (NTC无扩增)。结果显示,TransGen产品扩增灵敏度与Company T产品基本一致。
不同物种模板扩增

以不同物种的RNA反转录(TransGen, AT311)后得到的cDNA为模板分别使用TransGen与Company T的产品进行扩增(NTC无扩增)。结果显示,TransGen产品扩增效果与Company T产品基本一致。


产品介绍视频
1.Zhang B, He P, Lawrence J E G, et al. A human embryonic limb cell atlas resolved in space and time[J]. Nature, 2023.(IF 64.80)
2.Zhang J Y, Wang B, Xu H R, et al. Root microbiota regulates tiller number in rice[J]. Cell, 2025.(IF 45.50)
3.Zhao K, Xue H, Li G, et al. Pangenome analysis reveals structural variation associated with seed size and weight traits in peanut[J]. Nature Genetics, 2025. (IF 31.80)
4.Xiang B, Zhang M, Li K, et al. The epitranscriptional factor PCIF1 orchestrates CD8+ T cell ferroptosis and activation to control antitumor immunity[J]. Nature Immunology, 2025.(IF 27.80)
5.Huang L, Wei M, Li H, et al. GP73-dependent regulation of exosome biogenesis promotes colorectal cancer liver metastasis[J]. Molecular Cancer, 2025.(IF 27.70)
6.Deng P, Wang Z, Chen J, et al. RAD21 amplification epigenetically suppresses interferon signaling to promote immune evasion in ovarian cancer[J]. The Journal of Clinical Investigation, 2022.(IF 19.46)
7.Huang J, Wu C, Kloeber J A, et al. SLFN5-mediated chromatin dynamics sculpt higher-order DNA repair topology[J]. Molecular Cell, 2023.(IF 19.33)
8.Liang Y, Wang J, Xu C, et al. Remodeling Collagen Microenvironment in Liver Using a Biomimetic Nano‐Regulator for Reversal of Liver Fibrosis[J]. Advanced Science, 2023.(IF 17.52)
9.Liang Y, Zhang J, Xu C, et al. Biomimetic Mineralized CRISPR/Cas RNA Nanoparticles for Efficient Tumor-Specific Multiplex Gene Editing[J]. ACS nano, 2023.(IF 17.10)
10.He F, Liu Z, Xu J, et al. Black phosphorus nanosheets suppress oxidative damage of stem cells for improved neurological recovery[J]. Chemical Engineering Journal, 2023.(IF 16.74)
11.He F, Cheng K, Qi J, et al. Black phosphorus nanosheets enhance differentiation of neural progenitor cells for improved treatment in spinal cord injury[J]. Chemical Engineering Journal, 2023.(IF 15.10)
12.Chen B, Jin K, Dong J, et al. Hypocretin‐1/Hypocretin Receptor 1 Regulates Neuroplasticity and Cognitive Function through Hippocampal Lactate Homeostasis in Depressed Model[J]. Advanced Science, 2024.(IF 14.30)
13.Huang C, Jiang T, Pan W, et al. Ubiquitination of NS1 confers differential adaptation of zika virus in mammalian hosts and mosquito vectors[J]. Advanced Science, 2024.(IF 14.30)
14.Liang Y, Zhang J, Wang J, et al. Restoring Tumor Cell Immunogenicity Through Ion‐Assisted p53 mRNA Domestication for Enhanced In Situ Cancer Vaccination Effect[J]. Advanced Science, 2025(IF 14.30)
15.Cui B, Guo X, Zhou W, et al. Exercise alleviates neovascular age-related macular degeneration by inhibiting AIM2 inflammasome in myeloid cells[J]. Metabolism, 2023.(IF 13.93)
16.Sun D, Zhang X, Yin Z, et al. As-hyperaccumulator Pteris vittata and non-hyperaccumulator Pteris ensiformis under low As-exposure: Transcriptome analysis and implication for As hyperaccumulation[J]. Journal of Hazardous Materials, 2023.(IF 13.60)
17.Xiong Y, He C, Lin X, et al. Black phosphorus nanosheets inhibit glioblastoma cell migration and invasion through modulation of WNT/β-catenin and NOTCH signaling pathways[J]. Chemical Engineering Journal, 2024.(IF 13.40)
18.Zuo F, Jiang L, Su N, et al. Imaging the dynamics of messenger RNA with a bright and stable green fluorescent RNA[J]. Nature Chemical Biology, 2024.(IF 13.00)
19.Zhang J, Yuan J, Lin J, et al. Molecular basis of locus-specific H3K9 methylation catalyzed by SUVH6 in plants[J]. Proceedings of the National Academy of Sciences, 2023.(IF 12.78)
20.Xu J, Zhao J, Wang R, et al. Shh and Olig2 sequentially regulate oligodendrocyte differentiation from hiPSCs for the treatment of ischemic stroke[J]. Theranostics, 2022.(IF 11.56)
21.Cheng H, Liu S, Zhang Y, et al. Comparative single-cell transcriptomic map reveals divergence in leaves between two cotton species at cell type resolution[J]. Journal of Advanced Research, 2025(IF 11.40)
22.Wang X, Ling R, Peng Y, et al. RNPS1 stabilizes NAT10 protein to facilitate translation in cancer via tRNA ac4C modification[J]. International Journal of Oral Science, 2024.(IF 10.80)
23.Yang D, Wang W, Zhao L, et al. Resuscitation of viable but nonculturable bacteria promoted by ATP-mediated NAD+ synthesis[J]. Journal of Advanced Research, 2024.(IF 10.70)
24.He F, Du D, Chen Z, et al. A natural variation in the promoter of TaGDSL‐7D contributes to grain weight and yield in wheat[J]. Plant Biotechnology Journal, 2025.(IF 10.50)
25.Su D, Li M, Xie Y, et al. Gut commensal bacteria Parabacteroides goldsteinii-derived outer membrane vesicles suppress skin inflammation in psoriasis[J]. Journal of Controlled Release, 2025.(IF 10.50)
26.You L Y, Lin J, Xu H W, et al. Intragenic heterochromatin‐mediated alternative polyadenylation modulates miRNA and pollen development in rice[J]. New Phytologist, 2021.(IF 10.15)


